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Abstract

HPLC optimization strategy consists of four elements; experimental design, retention modeling, quality criteria function, and optimum
search method. In this paper we present a simple, superior alternative to general classes of classical resolution functions (Sfunction) and a novel
o sed
q servation
o on values
t imensional
o th higher
p
o in microbial
f
©

K

1

t
(
a
n
o
T
s
m
t
i

pre-
pace.
in-

-
suc-

hers

tive
y of
used
ion

0
d

ptimum search algorithm (iterative stochastic search, ISS) for HPLC optimization. Comparison ofSwith general classes of resolution-ba
uality criteria functions (Rs,Rp, andRmin) shows superior features such as correct assessment of favorable separation conditions, pre
f peak pair contributions, elimination of arbitrary cut-off values, and a unique capability to interpret absolute significance of functi

hrough a simple inequality. The proposed ISS algorithm is more robust than standard methods and it is easily applicable to hyperd
ptimization. ISS also shows clear advantages in its ability to correctly identify the global optimum (instead of local optimum), wi
recision, with more efficient use of computation cycles, and with easier implementation. Successful application ofS and ISS to HPLC
ptimization was demonstrated in the separation of representative functionalities (sugars, alcohols, and organic acids) present

ermentations. Both the optimal and pathological (worst) conditions were successfully predicted and experimentally verified.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Development of an HPLC method typically involves op-
imization, which is identification of operating conditions
e.g., mobile phase composition, pH, and column temper-
ture) that result in desirable outcomes such as higher plate
umbers, shorter analysis times, or in the case of simultane-
us analysis of multiple compounds, better peak separation.
he general optimization strategy for obtaining the best peak
eparation consists of four consecutive but independent ele-
ents: design of experiment, retention modeling, quality cri-

eria function, and optimum search method. The use of exper-
mental design allows for efficient sampling of the parameter

∗ Corresponding author. Tel.: +1 515 294 1516; fax: +1 515 294 2386.
E-mail address:ramong@iastate.edu (R. Gonzalez).

space, while retention modeling provides a continuous re
sentation of peak positions throughout the parameter s
Examples of experimental designs in HPLC optimization
clude full-factorial[1], central composite[2], uniform [3],
simplex lattice[4], and “PRISMA” [5] designs. For reten
tion modeling, the empirical, quadratic model has been
cessfully applied in HPLC optimization by many researc
[6–8].

Before optimization begins, a quality criteria or objec
function must be defined to reflect the quality/desirabilit
the separation. Many quality criteria functions have been
in HPLC optimization, but the pairwise resolution funct
is probably the most popular:

Ri,j = tj − ti

(wi/2) + (wj/2)
(1)

021-9673/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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whereti , tj are retention times andwi, wj are widths of peaks
i and j in units of time. Assuming peak symmetry,Ri,j = 1
means peaksi andj are barely separated. As it is not necessary
to consider non-adjacent pairsi and j in the chromatogram,
the global resolution function can be defined as[9]:

Rp =
n−1∏
i=1

Ri,i+1 (2)

wheren is the total number of peaks, andi = 1 ton is peak
index in order of appearance in the chromatogram. The sig-
nificance ofRp is that it reaches a maximum when all of
the peaks are most evenly spaced. In fact, if theti ’s are in-
dependent variables and allwi’s are equal,Rp will reach a
maximum when all adjacent peaks are exactly equidistant.

Global quality criteria such as Eq.(2) serve to represent
the overall quality of peak separation with a single numeri-
cal value, thereby providing a convenient measure for sub-
sequent optimization. A potential drawback of using global
quality criteria is that, unlike pairwise criteria such as Eq.
(1), information about individual peaks is lost. As an ex-
ample, very well-separated peak pairs (Ri,j > 2) give unduly
prominent contribution toRp, thus potentially masking penal-
ties due to poorly separated pairs (Ri,j < 0.5). To overcome
this inherent limitation, many proposed alternatives impose
some sort of arbitrary upper limit on theR values[10,11].
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main. Accurate results can be achieved provided that the grid
size is small enough (i.e., the gridpoints are dense enough),
but preferably not too small as to impose undue computa-
tional burden during optimization.

In this paper we describe a novel quality criteria func-
tion that is simpler but superior to otherRi,j-based functions,
as well as a novel optimum search algorithm that is more
robust than current standards and easily applicable to hyper-
dimensional optimization problems. Along with statistical
experimental design and retention modeling, these new ele-
ments were utilized in the optimization of temperature and
mobile phase concentration in HPLC separation of repre-
sentative functionalities (e.g., sugars, alcohols, and organic
acids) commonly present in microbial fermentation. Com-
parison of the new approach to established methods is given.
As an aid to method development, a computer program was
written for the execution of the search algorithm.

2. Experimental

2.1. HPLC instrumentation

Experiments were run on a Waters (Milford, MA, USA)
HPLC system consisting of an in-line degasser AF, gradient
pump 1525 with column heater, autosampler 717 plus, refrac-
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nother option is to consider only the pair with lowest r
lution (Rmin), focusing only on the “bottleneck” of th
eparation[12]. However, other pairs could be almost
adly separated, thus critical information may be lost if t
re ignored. Extensive reviews of quality criteria functi
sed in HPLC optimization[13,14] may be of interest t

he reader.
Optimum search methods used in HPLC separation

e broadly categorized into graphical and numerical m
ds. Graphical methods such as the window diagram[15]
nd overlapping resolution map[10] provide a visual repre
entation of how the quality criteria function changes ove
ariable domain, from which the optimum is easily identifi
n general, this can be achieved by contour (2D) or sur
3D) plots. Optimum identification by visual inspection
eyeballing” should give rather good accuracy. However,
erical methods offer higher precision, as well as the ab

o tackle higher-dimensional optimizations.
Numerical methods commonly used in HPLC optim

ions are simplex[16,17]and grid search[18,19]. A simplex
s a mathematical construct that consists ofd+ 1 vertices in
d-dimensional space (e.g., a triangle in 2D, a tetrahe

n 3D). Through evaluation of the quality criteria function
he vertices, the simplex is allowed to explore the para
er space by reflection, expansion, and contraction, un
f the vertices converge to an optimum. A common prob
ith simplex method is that the global optimum is not alw
chieved – the simplex can easily be trapped inside loca

ima [20]. The grid search method avoids this problem b
ystematic and exhaustive search over the whole variab
ive index detector 2410, and a personal computer with
ower software for data acquisition. An HPX-87H colu
ith 9-�m Aminex resin (sulfonated divinylbenzene–styr
opolymer) was used with a cation H pre-column
ridge (Bio-Rad, Hercules, CA, USA) for execution of io
xclusion chromatography. Deionized water for the mo
hase and needle wash was purified using a Nanopu
ystem (Barnstead, Dubuque, IA, USA) to a conductivit
8 M	 cm and filtered through a 0.2-�m membrane (Milli-
ore, Billerica, MA, USA). Isocratic elution for all runs w
xecuted at flow rate = 0.45 mL/min using dilute sulfuric a
olutions as mobile phase.

.2. Chemicals

All chemicals were obtained from Fisher Scientific (F
awn, NJ, USA) unless otherwise indicated. Twelve ana
ere included in the analyses, representing three functio

ies commonly present in microbial fermentation broths (
rs, alcohols, and organic acids), as well as growth me

ngredients (phosphate salts).
Glucose, xylose, glycerol, ethanol, formic acid, lactic a

uccinic acid, malic acid, and fumaric acid were obta
rom Absolute Standards (Hamden, CT, USA) as 1 g/L s
ard solutions in water. Citric acid and pyruvic acid
odium pyruvate) were obtained from Sigma–Aldrich
ouis, MO, USA). Phosphate was obtained as potas
hosphate. The column was equilibrated for at least 2
ry time changes were introduced in temperature or m
hase composition. Injection volume was 10�L for all runs.
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2.3. Experimental design, peak width assessment, and
retention modeling

To formally define the parameter space with temperature
(T) and sulfuric acid concentration in the mobile phase (C) as
independent variables, a central composite design was pre-
pared using the JMP 5.0.1 software (SAS Institute, Cary, NC,
USA,http://www.jmp.com/). Boundaries of the experimental
domain are defined by instrument ratings and practical con-
siderations. For temperature, the minimum valueTmin is set
to 25◦C (ambient) and the maximumTmaxis set to the highest
temperature attainable with the column heater (60◦C). The
HPX-87H column has an operating pH range of 1–3, cor-
responding to 0.5 to >90 mM of sulfuric acid in the mobile
phase.Cmin is set to 0.5 mM accordingly, butCmax is set to a
lower value (30 mM), as a preliminary study suggested that
separation is generally better at lower sulfuric acid concen-
tration. Scaled variablesx andy are normalized temperature
and concentration defined as follows:

x = 1.2872

(
2T − Tmax − Tmin

Tmax − Tmin

)
(3)

y = 1.2872

(
2C − Cmax − Cmin

Cmax − Cmin

)
(4)

whereT is in degrees Celsius,C is in mM, and 1.2872 is the
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Fig. 1. Power law fitting of peak width vs. flow rate indicates hyperbolic
relationship. Data for formic acid, lactic acid, and ethanol are shown.

tion, flow rate is not considered in the experimental design
anymore because it does not affect peak resolution/separation
quality.

Later in optimization, the proportionality relationship be-
tween peak width and retention time is applied with re-
spect to a reference point (T* , C* ), at which a preliminary
run/chromatogram should be available for peak width esti-
mates. For a given compound, the peak width at any point in
the domain is then calculated as:

w = w(T ∗, C∗)
t

t(T ∗, C∗)
(5)

wheret= t′ + t0 is the retention time as calculated by a re-
tention model, witht0 (dead time) value obtained from the
preliminary chromatogram. This relationship is equivalent
to the constant plate number assumption. As all chromato-
graphic runs were done at the same flow rate,t0 is constant
in this case, although generally it would vary inversely with
flow rate.

To describe the retention behavior throughout the experi-
mental domain, three retention models will be explored and
evaluated at constant flow rate (0.45 mL/min). The net reten-
tion time t′ can be modeled as a function ofx andy with a
quadratic model (model 1)[14]:

t′(x, y) = t − t = β + β x + β y + β xy + β x2 + β y2

w n
d -
e
o , the
m or
xial value corresponding to an orthogonal central comp
esign[21]. It is evident that Eq.(3) linearly transforms th

emperature over the [Tmin,Tmax] range tox in the [−1.2872
.2872] range, and Eq.(4) does the same for the concen

ion.
TheT andC values at the design points are reporte

able 1with their correspondingx andy values. With the
enter point repeated, the total number of design points
he analytes described in Section2.2 were combined int

hree injection groups, so the total number of actual c
atographic runs was 30. For similar central composite

igns in three- and four-dimensions, the number of de
oints would be 16 and 26, respectively.

Assessment of peak separation quality withRi,j-based
unctions (Eq.(1)) requires not only knowledge of retenti
imes but also peak widths, both of which are strong funct
f flow rateF. Retention time is expected to vary invers
ith flow rate, and systematic studies indeed have shown
ow rate does not affect selectivity[7,22]. In general, flow
ate does affect peak resolution, because plate number
ith flow rate (Van Deemter theory)[23]. However, if the
late number is assumed to be constant within a certain
ate range, by definition peak width is proportional to re
ion time. Our preliminary data from a three-factor des
extra dimension forF between 0.3 and 0.6 mL/min) indica
hat within the ranges considered, retention times corr
erfectly with reciprocal of flow rate, and power-law fitting
eak width vs. flow rate plots results in powers very clos
1, i.e., peak width is also inversely proportional to flow r

Fig. 1). As this supports the constant plate number ass
0 0 1 2 3 4 5

(6)

here t and t0 are the total retention time and colum
ead time in minutes, andβ0 to β5 are coefficients for lin
ar (x, y), quadratic (x2, y2), and interactions effects (xy)
f/among temperature and concentration. Alternatively
odel is also applied to the logarithm of the capacity factk′

http://www.jmp.com/
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Table 1
Central composite design and comparison of actual (normal font) and predicted (italics) net retention timet′ in minutes at the design points

T (◦C) C (mM) x y Phosphate Malic acid Lactic acid Formic acid Succinic acid Fumaric acid Citric acid Pyruvic acid Glucose Xylose Ethanol Glycerol

25.0 15.25 −1.2872 0 2.630 4.583 8.233 10.282 7.747 11.796 2.524 4.895 8.714 18.758 3.098 3.918
2.650 4.565 8.254 10.277 7.748 12.291 2.510 4.982 8.694 18.731 3.082 3.902

28.9 3.79 −1 −1 1.761 4.413 8.186 10.086 7.597 11.711 2.362 3.703 8.870 19.165 3.245 4.064
1.868 4.369 8.158 10.052 7.469 11.236 2.325 3.635 8.914 19.226 3.278 4.096

28.9 26.71 −1 1 3.021 4.484 8.230 10.197 7.531 11.713 2.466 5.295 8.761 19.243 3.093 3.916
2.944 4.521 8.254 10.223 7.594 12.008 2.498 5.326 8.749 19.228 3.086 3.909

42.5 0.5 0 −1.2872 0.832 3.301 7.450 8.684 6.125 6.749 1.434 1.404 9.237 20.398 3.549 4.366
0.553 3.318 7.457 8.695 6.162 6.777 1.451 1.096 9.174 20.306 3.503 4.321

42.5 15.25 0 0 3.046 4.306 8.226 9.964 7.033 11.003 2.374 5.192 8.953 20.095 3.303 4.126
3.046 4.307 8.227 9.965 7.026 11.002 2.376 5.194 8.956 20.095 3.299 4.121
3.095 4.300 8.202 9.958 7.042 10.722 2.366 5.212 8.961 20.106 3.306 4.128

42.5 30.0 0 1.2872 3.410 4.268 8.211 9.948 6.976 11.248 2.347 5.673 8.946 20.282 3.242 4.066
3.352 4.321 8.216 9.982 7.059 10.827 2.391 5.560 8.970 20.309 3.258 4.083

56.1 3.79 1 −1 2.323 4.044 8.113 9.633 6.618 8.773 2.150 3.652 9.177 20.684 3.550 4.369
2.347 4.001 8.083 9.596 6.489 9.191 2.132 3.885 9.221 20.753 3.582 4.400

56.1 26.71 1 1 3.745 4.110 8.161
3.700 4.140 8.178

60/0 15.25 1.2872 0 3.523 4.095 8.126
3.557 4.076 8.156

As the center point of the experimental design was run twice, the total num
0
5
)
8
9
–
1
0
1

9.747 6.556 9.808 2.280 5.847 9.079 20.764 3.402 4.225
9.759 6.597 9.822 2.291 5.691 9.068 20.756 3.394 4.216

9.674 6.457 9.265 2.260 5.354 9.116 20.736 3.490 4.308
9.680 6.464 9.488 2.244 5.427 9.096 20.697 3.476 4.295

ber of design points is 10.
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(model 2)[6,7]:

ln k′(x, y) = ln

(
t − t0

t0

)

= β′
0 + β′

1x + β′
2y + β′

3xy + β′
4x

2β′
5y

2 (7)

In the case of ion exclusion chromatography of weak acids,
the capacity factor exhibits a Michaelis–Menten-like rela-
tionship with proton concentration, and thus the sulfuric acid
concentrationC [24]:

k′(C) = γ0

(
C

C + γ1

)
(8)

whereγ0 is a constant absorbing the volumes of the mobile
and resin phases, andγ1 is related to the acid dissociation
constant. The logarithm of the capacity factor is also expected
to vary linearly with the reciprocal of absolute temperature
over a small range[23]:

ln k′(T ) = γ2 + γ3

T
ork′(T ) = exp

(
γ2 + γ3

T

)
(9)

Combining the functional forms of theT- and C-
dependence of the capacity factor, a semi empirical model
for the net retention timet′ can be formulated as follows
(model 3):

t
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Table 2
Goodness of fit assessment of three retention models

R2
adj (model 1) R2

adj (model 2) R2
adj (model 3)

Phosphate 0.9157 0.7269 0.9774
Malic acid 0.3917 0.2049 0.9871
Lactic acid 0.0910 −0.3612 0.9850
Formic acid 0.3641 0.0402 0.9961
Succinic acid 0.6762 0.5987 0.9724
Fumaric acid 0.4772 0.3443 0.9311
Citric acid 0.3751 0.2210 0.9900
Pyruvic acid 0.8260 0.5915 0.9813

Glucose 0.9552 0.9466 0.8892
Xylose 0.9571 0.9446 0.8945
Ethanol 0.9901 0.9671 0.9291
Glycerol 0.9202 0.9079 0.9589

Model 3 greatly improves the fit of acidic compounds.

better than model 2, but the fit for acidic compounds is poor.
Model 3 greatly improves the fit for acidic compounds. The
fit for sugar and alcohol compounds is slightly better with
model 1 than model 3. Based on these results, model 1 is used
for sugars and alcohols, and model 3 is used for the acidic
compounds. Comparison of predicted and actual values of net
retention timet′ at the design points (Table 1) shows good
agreement, which would yet improve upon correction witht0
(approximately 8.6 min) for comparison of actual retention
time t.

3.2. Introduction and characterization of a novel quality
criteria function

In this work an alternative to the classical global resolution
function is proposed. The function is based on the pair-wise
resolutionRi,j as described in Eq.(1), only that the reciprocal
is used:

R′
i,j

(wi/2) + (wj/2)

tj − ti
(12)

Accordingly, the global resolution function here is defined
as the sum ofR′

i,j:

S

n−1∑ ′

w the
c tion
f op-
t here
a
e
t
t scus-
s

(

′(x, y) = t − t0 = γ0
C

C + γ1
exp

(
γ2 + γ3

T

)
(10)

The fitted variable t′ is amenable for optimiza
ion/evaluation ofRi,j values, as the dead time (t0) cancels
ut upon subtraction. However, retention time estimate
referably reported in absolute terms (t), which amounts t
correction witht0. Models 1 and 2 were fitted according

he general linear model, using JMP 5.0.1. Fitting of mo
was done using the solver routine in Microsoft Excel.

. Results and discussion

.1. Fitting of experimental data to retention model

Goodness of fit of models 1–3 to the retention dat
ssessed by the adjusted correlation coefficients as rep

n Table 2. The adjusted correlation coefficient allows
omparison of models with different degrees of freed
21]:

2
adj = 1 − (1 − R2)

(
n − 1

n − d

)
(11)

here R is the correlation coefficient,n the number o
bservations (n= 10 in this case), andd is the numbe
f fitted parameters (d= 6 for models 1 and 2,d= 4 for
odel 3).
Although quadratic modeling of lnk′ (model 2) has bee

idely used[6,7], it is not the best option here because
t is the poorest for all compounds. Model 1 fits the d
=
i=1

Ri,i+1 (13)

herei = 1 to n is peak index in order of appearance in
hromatogram. To our knowledge, such global resolu
unction has never appeared in the literature on HPLC
imization and therefore merits thorough evaluation. T
re other quality criteria functions that are not based onRi,j ,
.g., peak separation[25] and overlapped fraction[26], but

hey do not allow for straightforward comparison withS. In
he interest of presenting clear-cut comparisons, this di
ion will be limited toRi,j-based functions.

Many quality criteria functions based on the sum ofRi,j
not R′

i,j as used here) have been reported[10,11]. In the
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simplest case, these functions take the following form:

Rs =
n−1∑
i=1

Ri,i+1 =
n−1∑
i=1

ti+1 − ti

(wi+1/2) + (wi/2)
(14)

It is obvious that in the special case where allwi’s are
equal,Rs collapses to (tn− t1)/w, i.e., the inner peaks totally
lose their significance. It is therefore not clear whether such
functions correctly reflect favorable separation conditions for
HPLC optimization.

With Rs-based functions, there is a need to limit the con-
tribution of very well-separated pairs. This is not necessary
for S, as well-separated pairs actually contribute the least.
Each term in Eq.(13)can be thought of as punitive. If a pair
is well-separated, its contribution is insignificant compared
to the penalty due to an overlapping pair. There is no need
for an arbitrary ‘cut-off’ value; peak pair contributions nicely
balance themselves due to hyperbolic decay with respect to
peak separation/distance.

Comparison ofS with Rp shows that the characteristic
property is retained, i.e.,Salso reaches an extremum (a min-
imum in this case) when all of the peaks are most evenly
spaced. UnlikeRp, however, information on individual pair-
wise contributions is conserved inS. This is because each
additive term in Eq.(13) is a positive number, whereas if the
logarithm is applied toR in Eq.(2),

l
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Fig. 2. Progression of peaks from overlapping to well-separated, with a
limiting overlap as a hypothetical state. At this state the peaks are barely
separated, and individual peak pairs contribute toS= (n− 1)/R* . As sepa-
ration is better whenS≤ (n− 1)/R* , S> (n− 1)/R* is rejected because it is
worse than limiting overlap.

accurately reflect favorable conditions for chromatographic
separation.

These comparisons show howS is superior to general
classes of quality criteria functions (Rs, Rp, andRmin), al-
beit having the same classical resolution functionRi,j as its
basis. Correct assessment of favorable separation conditions,
preservation of individual peak pair contributions, and elimi-
nation of arbitrary cut-off values clearly makeSan attractive
choice for a quality criteria function.

At first glance, the switch from Eq.(1) to (12)would seem
to introduce a problem whenti = tj , as nowR′

i,j would go to
infinity. This is true. In fact, if there aren compounds in the
sample, there could ben(n− 1)/2 surface loci whereS be-
comes infinity, effectively creating impenetrable barriers in
thex–y domain. However, this should not hinder the visual-
ization ofS, as explained below.

Fig. 2shows a progression of three chromatographic peaks
from overlapping to well-separated. The middle state is a hy-
pothetical situation (“limiting overlap”) in which all of the
peaks are barely separated, one appearing right next to an-
other. In this caseS= (n− 1)/R* exactly, assuming peak sym-
metry and an (arbitrarily chosen) baseline resolution criterion
of two adjacent peaks,R* . If the system evolves from lim-
iting overlap to a better separation, thenS≤ (n− 1)/R* . By
the same token, ifS> (n− 1)/R* , then the separation must be
worse than the limiting overlap (i.e., unacceptable). There-
f hen
v t
a en
t r-
i lap.
A oo
p

n Rp =
n−1∑
i=1

ln Ri,i+1 (15)

he additive terms could be positive or negative, hence
masking” effect. As mentioned before, this problem co
e avoided by only considering the worst-separated pair (Rmin

12] or αmin [6]) at the risk of losing critical information
uch sacrifice is not necessary withS, as all peak pairs d
ontribute without the masking effect.

SomeRp-based functions are normalized so that the va
re bounded between 0 and 1[27,28]:

′
p =

n−1∏
i=1

[
Ri,i+1

1/(n − 1)
∑n−1

i=1 Ri,i+1

]

=
∏n−1

i=1 Ri,i+1(
1/(n − 1)

∑n−1
i=1 Ri,i+1

)n−1
=

n−1∏
i=1

Ri,i+1

R
n−1

(16)

hereR̄ is the mean resolution. As̄R is constant within
hromatogram, the form ofR′

p in the last expression tells
hat it also suffers the same masking effect asRp. Moreover
rom the first expression it is evident that when allRi,i+1 terms
re equal,R′

p reduces to unity regardless of theRi,i+1 values
hat means according toR′

p, a chromatogram with allRi,i+1
alues equal to 0.5 (not resolved) and one with allRi,i+1 values
qual to 2 (baseline resolved) are equally good, wherea
re of course not. These observations suggest thatR′

p does no
ore,S> (n− 1)/R* can be used as a rejection criterion w
isualizing S. In other words (n− 1)/R* is effectively se
s the upper limit ofS, thereby ignoring singularities wh
i = tj in Eq.(12). However,S< (n− 1)/R* does not necessa
ly mean that the separation is better than limiting over
lso,S≤ (n− 1)/R* might not be feasible at all if there are t
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Fig. 3. The quality criteria functionS for a hypothetical sample containing
glucose, xylose, pyruvic acid, malic acid, formic acid, fumaric acid, and
glycerol (n= 7). The direction of theSaxis is reversed for ease visualization.
A rejection criterionS> 28 is shown. Topology ofSexhibits disconnected
regions with many local optima.

many compounds present in the sample (i.e., overcrowding
of peaks in the chromatogram), in which case a less stringent
rejection criterion may be chosen. It should be noted that this
rejection criterion does not in any way affect the location of
the global optimum, and therefore should not be confused
with the resolution cut-off value inRs that does affect the
global optimum.

Revisiting the limiting overlap (Fig. 2), it is clear that
the inequalityS≤ (n− 1)/R* is a result of inherently simple
peak series geometry. A direct consequence of this nice fea-
ture is that given the number of compoundsn, the absolute
significance ofS values can be readily assessed. That is, if
S> (n− 1)/R* , one knows that there is peak overlap.

Fig. 3shows a surface plot ofSfor a hypothetical sample
containing glucose, xylose, pyruvic acid, malic acid, formic
acid, fumaric acid, and glycerol (n= 7). For ease of visualiza-
tion, the direction of theSaxis is inverted. A global optimum
(S= 8.68,T= 32.0◦C,C= 10.0 mM) and 13 local optima are
shown. Also evident in Figure is a rejection criterionS> 28.

As visualization ofSby surface plots requires truncation
at the rejection criterion, such plots can appear deceptively
simple. The asymptotic nature ofS is better represented in
contour plots.Fig. 4 shows a contour plot ofS for a sample
having all 12 compounds (see Section2.2). This “birds-eye
view” shows a highly pathological domain with many local
minima, defined by boundaries of thet = t loci. Each line in
F ite
h the
d ving
a

Fig. 4. The pathological domain ofS. Contour plot shown corresponds to
all 12 compounds. Each line indicates a pairwise coelution locus. When two
lines cross, it means that four (non-unique) compounds are coeluting at that
condition. The existence of disconnected regions in the domain results in
many local minima, but the search algorithm should be able to identify only
one true global optimum.

Although the disconnected regions (asymptotically) coalesce
asS→ ∞, it is not possible to construct a continuous path
traveling from one region to another.

3.3. Development and characterization of a novel
optimum search algorithm

The challenge for any optimum search method is to iden-
tify a global optimum. Success highly depends on the nature
of the function evaluated, and for non-analytical functions,
absolute confidence in identifying the true global optimum is
generally not possible. To optimize a pathological function
like Swith disjointed domains (and thus many optima), a ro-
bust, fast, and high-precision algorithm is required. Here we
have developed an iterative stochastic search (ISS) method
for the search of global optimum. To our knowledge, the
method has never appeared in the literature on HPLC opti-
mization, and global optimization in general. The proposed
algorithm is outlined as follows, for a two-dimensional case
(Fig. 5):

(1) Generatemrandom points in the (x–y) domain.mshould
be a small number, just big enough to generate meaning-
ful statistics.

(2) Sort thempoints from best to worst (lowest to highestS)
to form a list. This is initialization for ‘storage points’.

(

w

list,
new
i j

igure represents a singularity at which a “wall” of infin
eight resides. These coelution loci effectively partition
omain into disconnected regions, with each region ha
t least one local optimum. This trait is apparent inFig. 3.
3) GenerateN random points in the domain (N should be
several orders of magnitude greater thanm, and follow a
uniform distribution[29]). Each time, compare the ne
point to the worst point in the list (with highestS). If
the new point is better, update the worst point in the
and sort the list again (equivalent to insertion of the
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Fig. 5. The iterative stochastic search (ISS) algorithm is based on pure random search, in which cloud of uniformly distributed random points are evaluated
within the domain. However, vast improvement in the convergence is achieved by successively shrinking the domain. In each iteration, the new, smaller domain
is generated based on the best storage points of the previous iteration. Each iteration in the ISS algorithm essentially identifiesmbest points out ofN points.
This can be achieved simply by sorting theN points directly, but such implementation would be computationally demanding and require large storage memory.
The ‘on-demand’ sorting algorithm operating on a small list (melements) minimizes CPU and memory load while achieving the same result.
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point). If this is the first iteration, instead ofN useNfirst
(one or two orders of magnitude greater thanN).

(4) If the best and worst points in the list are equally good
(S values within a predetermined toleranceε), stop the
search. The best point in the list is identified as the global
optimum. If not, continue.

(5) Calculate the mean and standard deviation for thex and
y coordinates of the points in the list.

(6) Generate a new (smaller) domain as the mean± 3SD for
thexandycoordinates. The new domain must satisfy two
requirements: it must be a subset of the old domain, and it
must contain the best point in the current list. Otherwise,
adjust the ranges accordingly.

(7) Go back to step 3.

In optimization of a continuous functionf(x), a necessary
condition is that df/dx= 0 at the optimumx* , which translates
to the convergence rule: given a small numberε > 0, there
exists aδ such that|f(x) − f(x* )| < ε whenever|x− x* | < δ. In
ISS, the use ofm storage points allows for identification of
a small convergence neighborhood around the global opti-
mum such that precision is defined byε, and confidence in-
tervals by the smallest and largest storage point coordinates,
which representδ. Note thatε is chosen arbitrarily, butδ is
a result of optimization. Of courseε cannot be smaller than
the computer’s floating-point precision (10−8), and should
n tin-
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The shrinking domain is analogous to serial dilution of a
concentrated liquid sample. By serial dilution, the same de-
gree of dilution can be achieved using less amount of diluent.
In this case, the same degree of precision can be achieved by
generating fewer points total. Therefore,N should not be too
large as to cause oversampling (because only a fraction of the
generated points are accepted), but also not too small as to
cause unrepresentative sampling.

ISS is similar to grid search (GS) in that it samples the
domain homogeneously, but through generation ofN random
points instead of grid construction. To compare GS and ISS,
consider the point densityρ (defined asN/domain volume)
for the last iteration where convergence is obtained. For GS
to have the same precision as ISS, it must have the same point
density, but applied to the whole original domain volumeV0.
Therefore, the ratio of points generated (and evaluated) in GS
to ISS (rGS,ISS) is calculated as:

rGS,ISS = ρV0

(niter − 1)N + Nfirst
= N(V0/Vf )

(niter − 1)N + Nfirst

= V0/Vf

(niter − 1) + (Nfirst/N)
(17)

whereniter is the number of iterations andVf is the final
domain volume at the last iteration.

Although it is not possible to obtain a general value for
n
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ot be too large as to making two distinct optima indis
uishable. An ideal choice forε would be the standard err
stimate for the optimized function at the optimum, as a p
ion exceeding the expected error would not be meanin
owever, this requires a priori knowledge of the optim

which is yet to be found), and an exhaustive traceback o
or propagation from the original chromatograms, mode
ing, and function evaluations, which seems like unneces
abor.

Each iteration in the ISS algorithm essentially identi
best points out ofN points. This can be achieved si

ly by sorting theN points directly, but such implementati
ould be computationally demanding and require large
ge memory. The ‘on-demand’ sorting algorithm opera
n a small list (m elements) minimizes CPU and mem

oad while achieving the same result.
The first iteration is the most critical. In this step, m

oints (Nfirst) are generated to ensure that the whole doma
ampled more thoroughly. At the end of the first iteration
best points should already cluster around the neighbor

f the global optimum. Statistical measures of them best
oints (center of mass, standard deviation) are then us
efine a new, smaller domain for the second iteration
hoice of a±3σ span is conservative in a sense that if thm
ample points come from a normally distributed popula
he entire population is represented withinµ ± 3σ). As such
ubsequent iterations are done over smaller (and shrin
omains surrounding the global optimum, until finally al

hembest points are within a small toleranceε, at which poin
he global optimum is identified.
iter, our experience with the current system (see Section3.4)
hows that it is normally below 100, even for the most d
ult case (all compounds included in optimization). AsNfirst
s also about two orders of magnitude higher thanN, the de
ominator of Eq.(17) should be in the order of 100 or le
owever, the numeratorV0/Vf is very large because the u
er and lower bounds of each dimension (x or y) become
symptotically close at the end of iteration, and depen
n the convergence criterionε, can be approaching mach
recision (10−8). This would make the ratiorGS,ISS(and thus
omputation time) prohibitively large, proving that GS
ever achieve the same degree of precision as ISS. No
rid size itself should not be confused with precision (ε) in the
ense of convergence (df/dx= 0). Although grid size serves
measure of grid quality, grid construction is akin to cho

ng an arbitraryδ, instead of obtaining it by choosingε in the
onvergence rule.

The choice of grid size is arbitrary, but probably b
uided by the precision of instruments (not to be confuse

he convergence precision,ε) used in, or for the preparation
he experiments. For example, grid size for a temperature
ould be set to the smallest increment in the temperature
roller, e.g., 0.1◦C. An example of this is given in Section3.6.

From a convergence (precision and confidence) s
oint, the simplex search (SS) is analogous to ISS in

hed+ 1 vertices also serve as storage points. SS is a se
ial algorithm (path-dependent) that climbs downhill in
uality criteria function field. Although SS is a fast algorith
y design it converges to the nearest local optimum, ins
f global optimum. This problem is overcome in ISS by th
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ough sampling (Nfirst points) of the entire domain in the first
iteration.

The simulated annealing (SA) method was used in a re-
cent example of HPLC optimization[7]. SA is a widely
used global optimization technique that mimics the met-
allurgical process of annealing (slow cooling). The algo-
rithm consists of a random walk within the simulation do-
main, with each trial move accepted with probability of 1
if it is downhill (criteria function improves), but follows the
Maxwell–Boltzmann distribution otherwise[29]. A nonzero
probability of accepting uphill moves allows the optimization
path to climb out of local optima. However, as the Boltzmann
factor vanishes with gradual lowering of system ‘tempera-
ture’, uphill moves become less likely and eventually the path
only goes downhill in the vicinity of the global optimum.

Although ISS bears a resemblance to SA in that both rely
on a stochastic factor in the progression toward the global op-
timum, the two algorithms are fundamentally different. The
optimization path in SA is a Markov chain, in which the
next position in the path is dependent on the current posi-
tion [30]. Thus, when the path encounters a local optimum,
it cannot escape immediately but rather oscillates until the
ridge is reached, resulting in futile cycles. At early stages
of the simulation, such wasteful oscillations may even occur
around the (then indistinguishable) global optimum. In ISS,
the next position in the optimization sequence is independent
o alk).
P sub-
j wed
t n a
M A
d e
u ting
i

eters
s em-
p ecre-
m ping
r vior
o ion
d
N a-
c
F ithm.

(i.e.,
s s) to
a GS,
a tage
( n,
m ion),
t arch
m

step
4 tion
o pped
w ithin

predetermined instrument precisions (e.g., 0.1◦C for temper-
ature), or when within an iteration, all of theNgenerated new
points are no better than the existingmpoints in the list.

3.4. Implementation of the proposed optimization
method

A computer program (OPTIMIZE) was written in Visual
Basic 6 (Microsoft, Redmond, WA) for automated optimum
identification, based on the alternative global resolution func-
tionSand the search algorithm ISS described above. The pro-
gram uses model coefficients for retention times as described
previously (Section3.1). Although the model is specific to
the column used (Bio-Rad HPX-87H), retention models for
other columns can easily be substituted.

In optimization, values formandNare set to 20 and 2000,
respectively.Nfirst is calculated as follows:

Nfirst = max

(
N,

n(n − 1)

nmax(nmax − 1)
× 100, 000

)
(18)

wheren is the number of compounds andnmax is the maxi-
mum number of compounds (=12). Then(n− 1) factor effec-
tively scalesNfirst according to the number of possible pair
coelution loci. For example,Nfirst = 100,000 ifn= 12. Ifn= 6,
Nfirst is only 22,727.
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rogression toward the global optimum is therefore not

ect to spatial restrictions governing a path/chain, but allo
o explore the entire domain freely and uniformly. Withi
arkov chain of lengthN, a fraction could be wasted in S
ue to futile cycles, but allN points will contribute to th
niform sampling of the simulation domain in ISS, resul

n identification ofmbest points for the next iteration.
For a successful implementation of SA, many param

uch as length of Markov chain, initial step size and t
erature, coefficients for temperature and step size d
ent (cooling schedule), and threshold criteria (stop

ule) [30,31] need to be fine-tuned to best suit the beha
f the quality criteria function and volume of the simulat
omain. In contrast, ISS implementation only involvesNfirst,
, andm. Furthermore, asm is known to be small so as to f
ilitate fast sorting, fine tuning is only needed forNfirst andN.
rom a practical standpoint, ISS is clearly an easier algor

Characterization of ISS reveals interesting analogies
torage points, uniform sampling, stochastic processe
lgorithms commonly used in HPLC optimization (SS,
nd SA). In each case, however, ISS features clear advan
e.g., ability to identify global optimum, higher precisio
ore efficient use of CPU cycles, easier implementat

hus making it an attractive choice as an optimum se
ethod.
As a final note, it is possible to use stopping criteria (

in ISS algorithm) other than the mathematical defini
f ε–δ convergence. For example, the search can be sto
hen all of the coordinates/independent variables are w
s

.5. Application of iterative stochastic search method to
igher dimensional problems

From the algorithm description, it is evident that ISS ca
asily generalized to more than two dimensions. The me
an be tested using a periodic, hyperdimensional fun
ith many optima,

1(x) =
d∏

i=1

cosxi

e0.01x2
i

(19)

nd also the non-periodic version,

2(x) =
d∏

i=1

1

e0.01x2
i

(20)

herex is the vector of independent variables andd is the
umber of dimensions/independent variables.Fig. 6 shows
1 for the two-dimensional case (d= 2), whereasF2 would
e a simple mound-shaped surface. BothF1 andF2 assume
global optimum value of 1 atx = [0].
The choice ofNfirst andN depends on the number of

ensions, and also the hyperdimensional volume of th
ain evaluated. As each variablexi is evaluated in [−z, z],

he volumeV is calculated as (2z)d. A maximum volumeV0
s chosen atz= 20.Nfirst is set to (V/V0)10d−1, but restricted
n [10,000,1,000,000].N is set to min(10,000,Nfirst/50).

The search algorithm was coded in Visual Basic 6
xecuted on a 2.0 GHz Pentium 4 PC. Correct identifica
f the global optimum is achieved in all trial runs (ε = 10−5,
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Fig. 6. Periodic functionF1 in 2 dimensions (x andy), drawn in [−z, z] =
[−20, 20]. Thez-direction here is scaled up 10 times to clearly show the
optima. The function reaches a global optimum at (0, 0).The functionF2

(not shown) would look like a mound centered at the origin, tangent to the
optima ofF1.

z= 10). Reasonable simulation time (under 1 min) is achieved
up tod= 7 forF1. Optimization ofF2 is much faster because
of the simpler form of the function. Atd= 7,F2 is optimized
within 0.2 s.

Although hypothetical functionsF1 andF2 are different
in form compared to real quality criteria functions (e.g.,S),
they are representative of “difficult” and “easy” hyperdimen-
sional functions.F1 is certainly as difficult as any real quality
criteria function, so robust performance of ISS up to seven
dimensions here looks promising, suggesting potential ap-
plication in HPLC optimization in larger dimensional spaces
(e.g., temperature, flow rate, pH, ionic strength, tertiary mo-

bile phase composition). To our knowledge, there has been
no simultaneous HPLC optimization reported in the literature
that operates on more than four dimensions. The availability
of more robust (faster and more accurate) search algorithms
such as ISS may provide an incentive for higher dimensional
optimization in HPLC separation.

3.6. Identification of optimal and pathological
conditions using proposed optimization method

Execution of the overall optimization strategy (experi-
mental design, modeling, scoring, and optimum identifica-
tion) is demonstrated on a sample containing representa-
tive substrates and products found in microbial fermentation
processes. The sample contained 0.1 g/L each of potassium
phosphate (KH2PO4), glucose, xylose, malic acid, succinic
acid, lactic acid, formic acid, and ethanol (eight compounds).
Based on the retention model and peak width estimates from
a preliminary run, the optimal conditions were identified us-
ing OPTIMIZE:T= 26.1◦C andC= 6.57 mM, with analysis
time∼30 min based on ethanol as the last eluting compound.
The optimized run is shown inFig. 7a. The retention times
are in excellent agreement with the predicted values accord-
ing to the retention model (all within 1%). The actualSvalue
of 7.224 compares well with the predicted value of 7.610
(

ob-
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1 ider
a ns.
T r is
0
−

F assium , (6)
l s. (a). O st
c th gluco
ig. 7. HPLC separation of a sample containing 0.1 g/L each of (1) pot
actic acid, (7) formic acid, and (8) ethanol, in the order of elution time
ondition atT= 50.6◦C andC= 17.84 mM. Here phosphate coelutes wi
within 5%).
The ISS algorithm used solved the optimization pr

em in 0.25 s through 50,444 evaluations ofS, at ε =
0−7 (2.0 GHz Pentium 4 PC). For comparison, cons
GS with grid size approximating instrument precisio

he smallest increment in the temperature controlle
.1◦C, so the number of grids in thex-direction is (60◦C
25◦C)/(0.1◦C) = 350. Assuming 18 M H2SO4 for prepa-

phosphate (KH2PO4), (2) glucose, (3) xylose, (4) malic acid, (5) succinic acid
ptimized/best condition atT= 26.1◦C andC= 6.57 mM. (b) Pathological/wor
se and xylose coelutes with malic acid.
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Fig. 8. Contour plot of quality criteria functionS for a sample containing
phosphate, glucose, xylose, malic acid, succinic acid, lactic acid, formic acid,
and ethanol (n= 8). Two coelution loci shown correspond to phosphate and
glucose, and xylose and malic acid. These two loci intersect atT = 50.6◦C
andC= 17.84 mM.

ration of 1 L of mobile phase using a micropipetter with
1�L increments, the number of grids in they-direction
= (30–0.5 mM)(1000 mL/18,000 mM)(1000�L/mL) = 1639.
With total number of grid points = (350 + 1)(1639 + 1) =
575,640 function evaluations, the problem was optimized in
2.63 s. The speedup factor of ISS over GS is >10 times in
this case.

The retention model allows us not only to predict the
optimal condition, but in a sense also to avoid patholog-
ical conditions. For this set of compounds, there are two
coelution loci, i.e., phosphate-glucose and xylose–malic acid.
Fig. 8shows that these two loci/lines cross atT= 50.6◦C and
C= 17.84 mM, at which phosphate would coelute with glu-
cose and xylose would coelute with malic acid. The sample
was run at this condition, and the coelutions occur as pre-
dicted (Fig. 7b). Comparison ofFig. 7a and b demonstrates
that the choice of temperature and solvent concentration can
produce strikingly different results. The optimized run still
has partial overlaps (solvable through deconvolution using
chromatogram analysis packages), but the pathological run
has two complete overlaps, which means that not only two,
but four (50%) compounds are unquantifiable. All the same,
this shows how the retention model used was able to accu-
rately predict both the best and worst operating conditions
for a particular sample.

As a side note, the fact that even the optimum or
b still
h tion.
O be
n seline
r

4. Conclusions

The alternative global resolution functionSfor HPLC op-
timization proposed in this work shows superior performance
when compared to general classes of quality criteria functions
(Rs,Rp, andRmin), including correct assessment of favorable
separation conditions, preservation of individual peak pair
contributions, elimination of arbitrary cut-off values, and a
unique capability to interpret absolute significance of func-
tion values through a simple inequality. The novel global
optimization algorithm (iterative stochastic search, ISS) also
developed in this work shows clear advantages over exist-
ing algorithms for HPLC optimization (grid search, simplex
search, simulated annealing) in its ability to correctly identify
the global optimum (instead of local optimum), with higher
precision, with more efficient use of computation cycles, and
with easier implementation. Based on a case study using a
hyperdimensional function with many optima, robust perfor-
mance of ISS also suggests its possible application in simul-
taneous, higher-dimensional HPLC optimization. Successful
application ofSand ISS to HPLC optimization was demon-
strated in the separation of 8 representative substrates and
products found in microbial fermentation. Excellent agree-
ment was found between actual and predicted values for the
optimized (best) and pathological (worst) conditions. The
overall optimization strategy successfully implemented in
t rob-
l
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est possible chromatographic separation in this case
as partial overlaps attests to the need for optimiza
f course, on the other hand optimization may not
eeded at all in cases where the peaks are always ba
esolved.
his work can be generalized to any HPLC optimization p
em.
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