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Abstract

HPLC optimization strategy consists of four elements; experimental design, retention modeling, quality criteria function, and optimum
search method. In this paper we present a simple, superior alternative to general classes of classical resolutiorSfurattamg @nd a novel
optimum search algorithm (iterative stochastic search, ISS) for HPLC optimization. Compar®eitlofieneral classes of resolution-based
quality criteria functionsRs, Ry, andRyin) shows superior features such as correct assessment of favorable separation conditions, preservation
of peak pair contributions, elimination of arbitrary cut-off values, and a unique capability to interpret absolute significance of function values
through a simple inequality. The proposed ISS algorithm is more robust than standard methods and it is easily applicable to hyperdimensional
optimization. ISS also shows clear advantages in its ability to correctly identify the global optimum (instead of local optimum), with higher
precision, with more efficient use of computation cycles, and with easier implementation. Successful applicatéom d8S to HPLC
optimization was demonstrated in the separation of representative functionalities (sugars, alcohols, and organic acids) present in microbial
fermentations. Both the optimal and pathological (worst) conditions were successfully predicted and experimentally verified.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction space, while retention modeling provides a continuous repre-
sentation of peak positions throughout the parameter space.
Development of an HPLC method typically involves op- Examples of experimental designs in HPLC optimization in-
timization, which is identification of operating conditions clude full-factorial[1], central composit§?], uniform [3],
(e.g., mobile phase composition, pH, and column temper- simplex lattice[4], and “PRISMA’ [5] designs. For reten-
ature) that result in desirable outcomes such as higher platetion modeling, the empirical, quadratic model has been suc-
numbers, shorter analysis times, or in the case of simultane-cessfully applied in HPLC optimization by many researchers
ous analysis of multiple compounds, better peak separation.[6—8].
The general optimization strategy for obtaining the best peak  Before optimization begins, a quality criteria or objective
separation consists of four consecutive but independent elefunction must be defined to reflect the quality/desirability of
ments: design of experiment, retention modeling, quality cri- the separation. Many quality criteria functions have been used
teria function, and optimum search method. The use of exper-in HPLC optimization, but the pairwise resolution function
imental design allows for efficient sampling of the parameter is probably the most popular:
e A ) tj—t
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wheret;, tj are retention times ang;, w; are widths of peaks ~ main. Accurate results can be achieved provided that the grid

i andj in units of time. Assuming peak symmetig,; = 1 size is small enough (i.e., the gridpoints are dense enough),

means peakisandj are barely separated. As itis not necessary but preferably not too small as to impose undue computa-

to consider non-adjacent pairandj in the chromatogram,  tional burden during optimization.

the global resolution function can be defined%is In this paper we describe a novel quality criteria func-

1 tion that is simpler but superior to othByj-based functions,

Re — 1—[ R @ as well as a novel optimum search a_IgorlthrT] that is more

P bi+l robust than current standards and easily applicable to hyper-
i=1 dimensional optimization problems. Along with statistical

wheren is the total number of peaks, ane: 1 ton is peak experimental design and retention modeling, these new ele-

index in order of appearance in the chromatogram. The sig- ments were utilized in the optimization of temperature and

nificance ofR,; is that it reaches a maximum when all of mobile phase concentration in HPLC separation of repre-

the peaks are most evenly spaced. In fact, ifttlseare in- sentative functionalities (e.g., sugars, alcohols, and organic

dependent variables and aif’'s are equalR, will reach a acids) commonly present in microbial fermentation. Com-

maximum when all adjacent peaks are exactly equidistant. parison of the new approach to established methods is given.

Global quality criteria such as E(R) serve to represent  As an aid to method development, a computer program was

the overall quality of peak separation with a single numeri- written for the execution of the search algorithm.

cal value, thereby providing a convenient measure for sub-

sequent optimization. A potential drawback of using global

quality criteria is that, unlike pairwise criteria such as Eq. 2. Experimental

(1), information about individual peaks is lost. As an ex-

ample, very well-separated peak paiRs;( 2) give unduly 2.1. HPLC instrumentation

prominent contribution t&,, thus potentially masking penal-

ties due to poorly separated paif3 j(<0.5). To overcome Experiments were run on a Waters (Milford, MA, USA)
this inherent limitation, many proposed alternatives impose HPLC system consisting of an in-line degasser AF, gradient
some sort of arbitrary upper limit on thi; values[10,11] pump 1525 with column heater, autosampler 717 plus, refrac-

Another option is to consider only the pair with lowest res- tive index detector 2410, and a personal computer with Em-
olution (Rmnin), focusing only on the “bottleneck” of the  power software for data acquisition. An HPX-87H column
separation12]. However, other pairs could be almost as with 9-um Aminex resin (sulfonated divinylbenzene—styrene
badly separated, thus critical information may be lost if they copolymer) was used with a cation H pre-column car-
are ignored. Extensive reviews of quality criteria functions tridge (Bio-Rad, Hercules, CA, USA) for execution of ion-
used in HPLC optimizatiorj13,14] may be of interest to  exclusion chromatography. Deionized water for the mobile
the reader. phase and needle wash was purified using a Nanopure I
Optimum search methods used in HPLC separation cansystem (Barnstead, Dubuque, IA, USA) to a conductivity of
be broadly categorized into graphical and numerical meth- 18 MQ cm and filtered through a 0,.2m membrane (Milli-
ods. Graphical methods such as the window diagfabi pore, Billerica, MA, USA). Isocratic elution for all runs was
and overlapping resolution m4p0] provide a visual repre-  executed at flow rate =0.45 mL/min using dilute sulfuric acid
sentation of how the quality criteria function changes over the solutions as mobile phase.
variable domain, from which the optimum is easily identified.
In general, this can be achieved by contour (2D) or surface 2.2. Chemicals
(3D) plots. Optimum identification by visual inspection or
“eyeballing” should give rather good accuracy. However, nu-  All chemicals were obtained from Fisher Scientific (Fair
merical methods offer higher precision, as well as the ability Lawn, NJ, USA) unless otherwise indicated. Twelve analytes
to tackle higher-dimensional optimizations. were included in the analyses, representing three functionali-
Numerical methods commonly used in HPLC optimiza- ties commonly presentin microbial fermentation broths (sug-
tions are simplex16,17]and grid searcfiL8,19] A simplex ars, alcohols, and organic acids), as well as growth medium
is a mathematical construct that consistslefl vertices in ingredients (phosphate salts).
a d-dimensional space (e.g., a triangle in 2D, a tetrahedron  Glucose, xylose, glycerol, ethanol, formic acid, lactic acid,
in 3D). Through evaluation of the quality criteria function at succinic acid, malic acid, and fumaric acid were obtained
the vertices, the simplex is allowed to explore the parame- from Absolute Standards (Hamden, CT, USA) as 1 g/L stan-
ter space by reflection, expansion, and contraction, until all dard solutions in water. Citric acid and pyruvic acid (as
of the vertices converge to an optimum. A common problem sodium pyruvate) were obtained from Sigma-Aldrich (St.
with simplex method is that the global optimum is not always Louis, MO, USA). Phosphate was obtained as potassium
achieved — the simplex can easily be trapped inside local op-phosphate. The column was equilibrated for at least 2 h ev-
tima [20]. The grid search method avoids this problem by a ery time changes were introduced in temperature or mobile
systematic and exhaustive search over the whole variable dophase composition. Injection volume wasdlOfor all runs.
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2.3. Experimental design, peak width assessment, and 140
retention modeling 50 | Lastic e
To formally define the parameter space with temperature 120 ¢ Formie acid

(T) and sulfuric acid concentration in the mobile phadgds SEET

independent variables, a central composite design was pre- 114 7

pared using the JMP 5.0.1 software (SAS Institute, Cary, NC, & 4501 v¥= 25311 %%

USA, http://www.jmp.com). Boundaries of the experimental = R’=09842 ¢

domain are defined by instrument ratings and practical con-2 90

siderations. For temperature, the minimum valy, is set § 55

to 25°C (ambient) and the maximumaxis setto the highest &

temperature attainable with the column heater°@®)p The 70 A

HPX-87H column has an operating pH range of 1-3, cor-

responding to 0.5 to >90 mM of sulfuric acid in the mobile w1 s

phaseCnin is set to 0.5 mM accordingly, b@mnax is set to a 50 | R’ =09956

lower value (30 mM), as a preliminary study suggested that

separation is generally better at lower sulfuric acid concen- 40 y i ' i \

tration. Scaled variablesandy are normalized temperature ol 0:2 08 o4 . 2 0 ok

and concentration defined as follows: Pl i)

2T — Trnax — Tmin Fig. 1. Power law fitting of peak width vs. flow rate indicates hyperbolic
X = 12872( o T ) (3) relationship. Data for formic acid, lactic acid, and ethanol are shown.
y= 1.2872<2C — Crmax — Cmin) @ tion, flow rate is not considered in the experimental design
max — Cmin anymore because it does not affect peak resolution/separation

quality.

whereT is in degrees Celsiu€; is in mM, and 1.2872 is the
axial value corresponding to an orthogonal central composite
design[21]. It is evident that Eq(3) linearly transforms the
temperature over th@in, Tmax] range toxin the [-1.2872,
1.2872] range, and E¢4) does the same for the concentra-

Later in optimization, the proportionality relationship be-
tween peak width and retention time is applied with re-
spect to a reference point’(, C"), at which a preliminary
run/chromatogram should be available for peak width esti-
mates. For a given compound, the peak width at any point in

tion. _ _ _ the domain is then calculated as:

The T andC values at the design points are reported in
Table 1with their corresponding andy values. With the w = w(T*, C¥) ! (5)
center point repeated, the total number of design points is 10. ' H(T*, C*)

The analytes described in Secti@r? were combined into ., . L
three injection groups, so the total number of actual chro- Wheret=t'+1o is the retention time as calculated by a re-
matographic runs was 30. For similar central composite de- t€ntion model, witho (dead time) value obtained from the

signs in three- and four-dimensions, the number of design preliminary chromatogram. This relatiqnship is equivalent
points would be 16 and 26, respectively. to the_constant plate number assumption. A_s all chromato-
Assessment of peak separation quality wRl)-based _grap_h|c runs were done at the same flow raigs constant_

functions (Eq(1)) requires not only knowledge of retention in this case, although generally it would vary inversely with
times but also peak widths, both of which are strong functions flOW rate. _ _ _
of flow rateF. Retention time is expected to vary inversely To descrlbg the retention 'behaV|or thro.ughout the experi-
with flow rate, and systematic studies indeed have shown thatMental domain, three retention models will be explored and
flow rate does not affect selectivify,22]. In general, flow e_valu_ated/at constant flow rate (0.45 m_L/m|n). The r_1et reten-
rate does affect peak resolution, because plate number variefON timet’ can be modeled as a function»andy with a
with flow rate (Van Deemter theor|23]. However, if the quadratic model (model 1)4]:

late number is assumed to be constant within a certain flow , 2 2
Eate range, by definition peak width is proportional to reten- ' (r,3) =1 —to=fo+ Prx + oy + Paxy + fax” + foy
tion time. Our preliminary data from a three-factor design (6)
(extra dimension foF between 0.3 and 0.6 mL/min) indicate
that within the ranges considered, retention times correlatewheret and to are the total retention time and column
perfectly with reciprocal of flow rate, and power-law fitting of ~ dead time in minutes, anp to Bs are coefficients for lin-
peak width vs. flow rate plots results in powers very close to €ar & ¥), quadratic %, y?), and interactions effectscy)
—1,i.e., peak width is also inversely proportional to flow rate ©f/among temperature and concentration. Alternatively, the
(Fig. 1). As this supports the constant plate number assump-model is also applied to the logarithm of the capacity faktor
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26

Table 1
Central composite design and comparison of actual (normal font) and predicted (italics) net retenttbmtimiautes at the design points
TCC) C(mM) x y Phosphate Malicacid Lacticacid Formicacid Succinicacid Fumaricacid Citricacid Pyruvicacid Glucose Xylose Ethanol Glycerol
25.0 15.25 —-1.2872 0 2630 4583 8233 10282 17747 11796 2524 4895 8714 18758 3098 3918 ;
2.650 4565 8254 10277 7748 12291 2510 4982 8694 18731 3082 3902 z
28.9 3.79 -1 -1 1761 4413 8186 10086 7597 11711 2362 3703 8870 19165 3245 4064 5
1.868 4369 8158 10052 7469 11236 2325 3635 8914 19226 3278 4096 =
Py}
28.9 26.71 -1 1 3021 4484 8230 10197 7531 11713 2466 5295 8761 19243 3093 3916 o
2.944 4521 8254 10223 7594 12008 2498 5326 8749 19228 3086 3909 S
N
42.5 0.5 0 —1.2872 0832 3301 7450 8684 6125 6749 1434 1404 9237 20398 3549 4366 %
0.553 3318 7457 8695 6162 6777 1451 1096 9174 20306 3503 4321 N
(&
42.5 15.25 0 0 D46 4306 8226 9964 7033 11003 2374 5192 8953 20095 3303 4126 o
3.046 4307 8227 9965 7026 11002 2376 5194 8956 20095 3299 4121 :37
3.095 4300 8202 9958 7042 10722 2366 5212 8961 20106 3306 4128 g
42.5 30.0 0 1.2872 .810 4268 8211 9948 6976 11248 2347 5673 8946 20282 3242 4066 @
3.352 4321 8216 9982 7059 10827 2391 5560 8970 20309 3258 4083 >
=
56.1 3.79 1 -1 2323 4044 8113 9633 6618 8773 2150 3652 9177 20684 3550 4369 3
2.347 4001 8083 9596 6489 9191 2132 3885 9221 20753 3582 4400 °
N
56.1 26.71 1 1 J45 4110 8161 9747 6556 9808 2280 5847 9079 20764 3402 4225 §
3.700 4140 8178 9759 6597 9822 2291 5691 2068 20756 3394 4216 =
©
60/0 15.25 1.2872 0 .823 4095 8126 9674 6457 9265 2260 5354 9116 20736 3490 4308 iR
3.557 4076 8156 9680 6464 9488 2244 5427 9096 20697 3476 4295 2

As the center point of the experimental design was run twice, the total number of design points is 10.
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(model 2)[6,7]; Table 2
Goodness of fit assessment of three retention models
t—t
Ink'(x, y) =In (t—o) Rig(modell)  RZ;(model2) Ry (model 3)
Phosphate 0157 07269 09774
0 hosph
_ 242 Malic acid 03917 02049 09871
= Bo+ Prx + By + Baxy + Bax“B 7 a
0T 2¥ T P3¥Y T Pa¥ PoY % Lactic acid 00910 ~0.3612 09850
Formic acid 03641 00402 09961
Inthe case ofion exclusion chromatography of weak acids, Succinicacid 6762 05987 09724
the capacity factor exhibits a Michaelis—Menten-like rela- Fumaricacid 01772 03443 09311
. hi ith . h h Ifuri ., Citric acid Q3751 02210 09900
tionship wit r?:ro;on concentration, and thus the sulfuric acid pyyic acid 08260 05915 09813
concentratio 4]
[24] Glucose 09552 09466 08892
) Xylose Q9571 09446 08945
KO =w|z - (8) Ethanol 09901 09671 09291
" Glycerol 09202 09079 09589

whereyg is a constant absorbing the volumes of the mobile Model 3 greatly improves the fit of acidic compounds.
and resin phases, and is related to the acid dissociation
constant. The logarithm of the capacity factor is also expected

to vary linearly with the reciprocal of absolute temperature petter than model 2, but the fit for acidic compounds is poor.

over a small rangg23]: Model 3 greatly improves the fit for acidic compounds. The
ey V3 e V3 fit for sugar and alcohol compounds is slightly better with

Nk(T) =y2+ T orki(T) = exp(yz + T ) ©) model 1 than model 3. Based on these results, model 1 is used
Combining the functional forms of thd@- and C- for sugars and alcohols, and model 3 is used for the acidic

dependence of the capacity factor, a semi empirical model C0mpounds. Comparison of predicted and actual values of net
for the net retention tim¢’ can be formulated as follows ~ 'etention timet’ at the design pointsTable ) shows good

(model 3): agreement, which would yetimprove upon correction w4th
(approximately 8.6 min) for comparison of actual retention
_ _ 3 timet.
fx,y)=t—to= ex + 10
(x, ) 0= <C n) D(Vz T ) (10)

The fitted variablet’ is amenable for optimiza- 3.2. Introduction and characterization of a novel quality
tion/evaluation ofR ; values, as the dead timg) cancels criteria function
out upon subtraction. However, retention time estimates are
preferably reported in absolute terni}s gvhich amounts to Inthis work an alternative to the classical global resolution
a correction withg. Models 1 and 2 were fitted according to  function is proposed. The function is based on the pair-wise
the general linear model, using JMP 5.0.1. Fitting of model resolutionR;j as described in Eq1), only that the reciprocal
3 was done using the solver routine in Microsoft Excel. is used:

. . i j (12)
3. Results and discussion tj—1

Accordingly, the global resolution function here is defined
as the sum ongj:
Goodness of fit of models 1-3 to the retention data is
assessed by the adjusted correlation coefficients as reported nl ,
in Table 2 The adjusted correlation coefficient allows for §= Z Riit1
comparison of models with different degrees of freedom
[21]: wherei =1 ton is peak index in order of appearance in the
n—1 chromatogram. To our knowledge, such global resolution
Rig=1—(1- R ( — d) (11) function has never appeared in the literature on HPLC op-
" timization and therefore merits thorough evaluation. There
where R is the correlation coefficienth the number of  are other quality criteria functions that are not base®gn
observations (=10 in this case), andl is the number e g. peak separatid@5] and overlapped fractiof26], but
of fitted parametersd=6 for models 1 and 2d=4 for they do not allow for straightforward comparison wihin
model 3). the interest of presenting clear-cut comparisons, this discus-
Although quadratic modeling of ki (model 2) has been  sjon will be limited toR j-based functions.
widely used[6,7], it is not the best option here because the Many quality criteria functions based on the sumRpf
fit is the poorest for all compounds. Model 1 fits the data (not R;,j as used here) have been reporf#@d,11] In the

3.1. Fitting of experimental data to retention model

(13)
i=1




94
simplest case, these functions take the following form:

tiy1 —

Rs = Z Rjit1= Z (wl+1/2) + (wl/Z) (1)

It is obvious that in the special case wherewjls are
equal,Rs collapses totf — t1)/w, i.e., the inner peaks totally
lose their significance. It is therefore not clear whether such
functions correctly reflect favorable separation conditions for
HPLC optimization.

With Rs-based functions, there is a need to limit the con-
tribution of very well-separated pairs. This is not necessary
for S, as well-separated pairs actually contribute the least.
Each term in Eq(13) can be thought of as punitive. If a pair
is well-separated, its contribution is insignificant compared

to the penalty due to an overlapping pair. There is no need

for an arbitrary ‘cut-off’ value; peak pair contributions nicely

balance themselves due to hyperbolic decay with respect to

peak separation/distance.

Comparison ofS with R, shows that the characteristic
property is retained, i.eSalso reaches an extremum (a min-
imum in this case) when all of the peaks are most evenly
spaced. UnlikdR,, however, information on individual pair-
wise contributions is conserved B This is because each
additive term in Eq(13)is a positive number, whereas if the
logarithm is applied tdz, in Eq. (2),

n—1

In R, = Z INR;it1
i=1

(15)

Y. Dharmadi, R. Gonzalez / J. Chromatogr. A 1070 (2005) 89-101

S>(n-1)/R*

S=(mn-1)R*

S<(n—1)/R*

Fig. 2. Progression of peaks from overlapping to well-separated, with a
limiting overlap as a hypothetical state. At this state the peaks are barely
separated, and individual peak pairs contribut&ton — 1)/R". As sepa-
ration is better wheis< (n— 1)/R’, S>(n— 1)/R is rejected because it is
worse than limiting overlap.

accurately reflect favorable conditions for chromatographic
separation.

These comparisons show hddvis superior to general
classes of quality criteria function®q, Ry, andRmn), al-
beit having the same classical resolution functi®pas its
basis. Correct assessment of favorable separation conditions,

the additive terms could be positive or negative, hence the preservation of individual peak pair contributions, and elimi-

“masking” effect. As mentioned before, this problem could
be avoided by only considering the worst-separated Baih(
[12] or amin [6]) at the risk of losing critical information.
Such sacrifice is not necessary wihas all peak pairs do
contribute without the masking effect.

nation of arbitrary cut-off values clearly makan attractive
choice for a quality criteria function.

Atfirst glance, the switch from Eql) to (12) would seem
to introduce a problem when=t;, as nowr; ¥ would go to
infinity. This is true. In fact, if there are compounds in the

SomeR,-based functions are normalized so that the values sample, there could be(n — 1)/2 surface loci wher& be-

are bounded between 0 and2lr,28]

I |

H;l ]iLRl i+1 _
n—1
(1/0 — DY Risea)

whereR is the mean resolution. AR is constant within a
chromatogram, the form at, in the last expression tells us
that it also suffers the same masking effecRgsMoreover,
from the first expression itis evident that wherRyjl.1 terms
are equalR"o reduces to unity regardless of tRg.1 values.
That means according ®,, a chromatogram with aR; j+1
values equal to 0.5 (notresolved) and one witiRgll, values

n—1

1

Riit1
1/ — DY Rija

/ —_—
RP

[T Rii1
i=1
En—l

(16)

comes infinity, effectively creating impenetrable barriers in
thex—y domain. However, this should not hinder the visual-
ization of S, as explained below.

Fig. 2shows a progression of three chromatographic peaks
from overlapping to well-separated. The middle state is a hy-
pothetical situation (“limiting overlap”) in which all of the
peaks are barely separated, one appearing right next to an-
other. In this cas&= (n— 1)/R" exactly, assuming peak sym-
metry and an (arbitrarily chosen) baseline resolution criterion
of two adjacent peaksy . If the system evolves from lim-
iting overlap to a better separation, th8r (n— 1)/R". By
the same token, B> (n— 1)/R’, then the separation must be
worse than the limiting overlap (i.e., unacceptable). There-
fore,S>(n— 1)/R’ can be used as a rejection criterion when
visualizing S In other words if— 1)/R" is effectively set
as the upper limit of5, thereby ignoring singularities when
ti =tj in Eq.(12). However,S<(n— 1)/R" does not necessar-

equal to 2 (baseline resolved) are equally good, whereas theyily mean that the separation is better than limiting overlap.

are of course not. These observations suggesRﬂMes not

Also,S< (n— 1)/R" might notbe feasible at all if there are too
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Global optimum 10

8
5,
m’ ;’l‘ljl?s\{\\: E . e+2
:ﬁwlf,ﬂl‘l‘\\\: Z 6
pi,{j!,’lll; 5 . 1e+3
flef "é'
5 1e+4
S 4
LOJ I 1e+5

25 30 35 40 45 50 55 60
Temperature (°C)

Fig. 4. The pathological domain & Contour plot shown corresponds to

all 12 compounds. Each line indicates a pairwise coelution locus. When two
lines cross, it means that four (non-unique) compounds are coeluting at that
Fig. 3. The quality criteria functio§for a hypothetical sample containing  condition. The existence of disconnected regions in the domain results in
glucose, xylose, pyruvic acid, malic acid, formic acid, fumaric acid, and many local minima, but the search algorithm should be able to identify only
glycerol (1=7). The direction of th&axis is reversed for ease visualization.  one true global optimum.

A rejection criterionS> 28 is shown. Topology o6 exhibits disconnected

regions with many local optima. Although the disconnected regions (asymptotically) coalesce

] ) . asS— oo, itis not possible to construct a continuous path
many compounds present in the sample (i.e., overcrowdmgtrave"ng from one region to another.

of peaks in the chromatogram), in which case a less stringent
rejection criterion may be chosen. It should be noted that this
rejection criterion does not in any way affect the location of
the global optimum, and therefore should not be confused
with the resolution cut-off value iRs that does affect the
global optimum.

3.3. Development and characterization of a novel
optimum search algorithm

The challenge for any optimum search method is to iden-
R - . I tify a global optimum. Success highly depends on the nature
Revisiting the limiting overlapRig. 9, it is clear that of the function evaluated, and for non-analytical functions,

the ||(r1qualltyS§ (nt_ DARd.'S at result of mhererf\ttlz.smyplef absolute confidence in identifying the true global optimum is
peak series geometry. Irect consequence ot this nice ea'generally not possible. To optimize a pathological function
ture is that given the number of compourdghe absolute

o . .. like Swith disjointed domains (and thus many optima), a ro-
5|gn|f|cance* ofS values can be reaqny assessed. That is, If bust, fast, and high-precision algorithm is required. Here we
S> (T‘ — D/R’, one knows that there is peak ovgrlap. have developed an iterative stochastic search (ISS) method

F|g_. SShOWS a surface plot (ﬁfolr a hypothepcal .sample. for the search of global optimum. To our knowledge, the
containing glucose, xylose, pyruvic acid, malic acid, formic method has never appeared in the literature on HPLC opti-
acid, fumaric acid, and glycerah & 7). For ease of visualiza-

tion, the direction of th&axis is inverted. A global optimum mization, and global optimization in general. The proposed
' : X algorithm is outlined as follows, for a two-dimensional case
(5=8.68,T=32.0°C,C=10.0mM) and 13 local optima are g

. o . - . Fig. 5):
shown. Also evident in Figure is a rejection criteridrn 28. (Fig-9
As visualization ofSby surface plots requires truncation (1) Generatenrandom points in thexty) domain.mshould
at the rejection criterion, such plots can appear deceptively  be a small number, just big enough to generate meaning-

simple. The asymptotic nature &fis better represented in ful statistics.

contour plotsFig. 4 shows a contour plot d& for a sample (2) Sortthempoints from best to worst (lowest to high&t
having all 12 compounds (see Sect®R). This “birds-eye to form a list. This is initialization for ‘storage points’.
view” shows a highly pathological domain with many local (3) GenerateN random points in the domaiN(should be
minima, defined by boundaries of the=tj loci. Each line in several orders of magnitude greater tharand follow a
Figure represents a singularity at which a “wall” of infinite uniform distribution[29]). Each time, compare the new
height resides. These coelution loci effectively partition the point to the worst point in the list (with highe8). If

domain into disconnected regions, with each region having the new point is better, update the worst point in the list,
at least one local optimum. This trait is apparenfig. 3. and sort the list again (equivalent to insertion of the new
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! START ]

h

Initialize m storage points in domain

Sort storage points with respect to score
function (first = best, last = worst)

b
™

Optimization loop

‘

FORi=1to N

Iteration loop

(Mirst for first iteration)

h

Generate a new point in
domain

Last storage point
= new point

Is new point better than
last (worst) storage point?

\

Sort storage points

NEXT ‘

Convergence achieved

Are the scores of first and last
storage points within €?

Report best storage point
as global optimum

Generate new domain (mean +/-3 standard { STOP }

deviation of storage point coordinates)

New domain must
(1) be a subset of old domain, and
(2) contains the best storage point

Fig. 5. The iterative stochastic search (ISS) algorithm is based on pure random search, in which cloud of uniformly distributed random poingetde eval
within the domain. However, vast improvement in the convergence is achieved by successively shrinking the domain. In each iteration, therdamamalle

is generated based on the best storage points of the previous iteration. Each iteration in the ISS algorithm essentiallyritdestifiesnts out oN points.

This can be achieved simply by sorting tRgoints directly, but such implementation would be computationally demanding and require large storage memory.
The ‘on-demand’ sorting algorithm operating on a small lise{ements) minimizes CPU and memory load while achieving the same result.
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point). If this is the first iteration, instead df useNsjrst The shrinking domain is analogous to serial dilution of a
(one or two orders of magnitude greater tiNn concentrated liquid sample. By serial dilution, the same de-

(4) If the best and worst points in the list are equally good gree of dilution can be achieved using less amount of diluent.
(Svalues within a predetermined tolerange stop the In this case, the same degree of precision can be achieved by
search. The best pointin the list is identified as the global generating fewer points total. Therefolkeshould not be too
optimum. If not, continue. large as to cause oversampling (because only a fraction of the

(5) Calculate the mean and standard deviation foxtaed generated points are accepted), but also not too small as to
y coordinates of the points in the list. cause unrepresentative sampling.

(6) Generate a new (smaller) domain as the me88D for ISS is similar to grid search (GS) in that it samples the

thexandy coordinates. The new domain must satisfy two domain homogeneously, but through generatidN cihdom
requirements: it must be a subset of the old domain, and it points instead of grid construction. To compare GS and ISS,
must contain the best point in the current list. Otherwise, consider the point density (defined as\/domain volume)
adjust the ranges accordingly. for the last iteration where convergence is obtained. For GS
(7) Go back to step 3. to have the same precision as ISS, it must have the same point
density, but applied to the whole original domain voluve
In optimization of a continuous functidix), a necessary = Therefore, the ratio of points generated (and evaluated) in GS
condition is that 8#dx=0 at the optimunx* , which translates to ISS {gs,s9 is calculated as:
to the convergence rule: given a small number0, there

exists a such thatf(x) — f(x")| <& wheneveix — x"| <§. In resiss = rVo _ N(Vo/ V1)
ISS, the use ofn storage points allows for identification of (niter — )N + Niirst ~ (ntiter — L)N + Nrirst
a small convergence neighborhood around the global opti- Vo/ Vs
mum such that precision is defined byand confidence in- = (titer — 1) ) 17)
. . iter + (Nflrst/N)
tervals by the smallest and largest storage point coordinates,
which represend. Note thats is chosen arbitrarily, but is where niter is the number of iterations and is the final
a result of optimization. Of coursecannot be smaller than  domain volume at the last iteration.
the computer’s floating-point precision (1%), and should Although it is not possible to obtain a general value for

not be too large as to making two distinct optima indistin- njer, OUr experience with the current system (see Se&idn
guishable. An ideal choice ferwould be the standard error  shows that it is normally below 100, even for the most diffi-
estimate for the optimized function at the optimum, as a preci- cult case (all compounds included in optimization).Mgst
sion exceeding the expected error would not be meaningful. is also about two orders of magnitude higher thathe de-
However, this requires a priori knowledge of the optimum nominator of Eq(17) should be in the order of 100 or less.
(which is yet to be found), and an exhaustive traceback of er- However, the numeratdfo/V; is very large because the up-
ror propagation from the original chromatograms, model fit- per and lower bounds of each dimensiotof y) becomes
ting, and function evaluations, which seems like unnecessaryasymptotically close at the end of iteration, and depending
labor. on the convergence criterian can be approaching machine

Each iteration in the ISS algorithm essentially identifies precision (10°8). This would make the ratings,iss(and thus
m best points out oN points. This can be achieved sim- computation time) prohibitively large, proving that GS can
ply by sorting theN points directly, but such implementation never achieve the same degree of precision as ISS. Note that
would be computationally demanding and require large stor- grid size itself should not be confused with precisigyirg the
age memory. The ‘on-demand’ sorting algorithm operating sense of convergencef{dk = 0). Although grid size serves as
on a small list fn elements) minimizes CPU and memory a measure of grid quality, grid construction is akin to choos-
load while achieving the same result. ing an arbitrany, instead of obtaining it by choosingn the

The first iteration is the most critical. In this step, more convergence rule.
points (Nsirst) are generated to ensure that the whole domainis  The choice of grid size is arbitrary, but probably best
sampled more thoroughly. At the end of the first iteration, the guided by the precision of instruments (not to be confused by
mbest points should already cluster around the neighborhoodthe convergence precisiar),used in, or for the preparation of
of the global optimum. Statistical measures of thebest the experiments. For example, grid size for atemperature axis
points (center of mass, standard deviation) are then used tacould be set to the smallestincrement in the temperature con-
define a new, smaller domain for the second iteration (the troller, e.g., 0.2C. An example of this is given in Secti@6.

choice of at30 span is conservative in a sense that ifithe From a convergence (precision and confidence) stand-
sample points come from a normally distributed population, point, the simplex search (SS) is analogous to ISS in that
the entire population is represented withia: 30). As such, thed+ 1 vertices also serve as storage points. SSis a sequen-

subsequent iterations are done over smaller (and shrinking)tial algorithm (path-dependent) that climbs downhill in the
domains surrounding the global optimum, until finally all of quality criteria function field. Although SSis a fast algorithm,
thembest points are within a small tolerargat which point by design it converges to the nearest local optimum, instead
the global optimum is identified. of global optimum. This problem is overcome in ISS by thor-
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ough samplingNirst points) of the entire domain in the first
iteration.

The simulated annealing (SA) method was used in a re-

cent example of HPLC optimizatiofy]. SA is a widely
used global optimization technique that mimics the met-
allurgical process of annealing (slow cooling). The algo-
rithm consists of a random walk within the simulation do-
main, with each trial move accepted with probability of 1
if it is downhill (criteria function improves), but follows the
Maxwell-Boltzmann distribution otherwig29]. A nonzero
probability of accepting uphill moves allows the optimization
path to climb out of local optima. However, as the Boltzmann
factor vanishes with gradual lowering of system ‘tempera-
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predetermined instrument precisions (e.g., @ for temper-
ature), or when within an iteration, all of tiNegenerated new
points are no better than the existimgpoints in the list.

3.4. Implementation of the proposed optimization
method

A computer program (OPTIMIZE) was written in Visual
Basic 6 (Microsoft, Redmond, WA) for automated optimum
identification, based on the alternative global resolution func-
tion Sand the search algorithm ISS described above. The pro-
gram uses model coefficients for retention times as described
previously (SectiorB.1). Although the model is specific to

ture’, uphill moves become less likely and eventually the path the column used (Bio-Rad HPX-87H), retention models for

only goes downhill in the vicinity of the global optimum.

Although ISS bears a resemblance to SA in that both rely

other columns can easily be substituted.
In optimization, values fomandN are set to 20 and 2000,

on a stochastic factor in the progression toward the global op-respectivelyNs st is calculated as follows:

timum, the two algorithms are fundamentally different. The
optimization path in SA is a Markov chain, in which the

next position in the path is dependent on the current posi-

tion [30]. Thus, when the path encounters a local optimum,

n(n —1)

Imax(fmax — 1)

Nirst = max(N, x 100, ooo) (18)

wheren is the number of compounds angla is the maxi-

it cannot escape immediately but rather oscillates until the mum number of compounds (=12). Thig — 1) factor effec-

ridge is reached, resulting in futile cycles. At early stages tively scalesNyist according to the number of possible pair
of the simulation, such wasteful oscillations may even occur coelution loci. For exampl&sis; = 100,000 ifn=12. [fn =6,

around the (then indistinguishable) global optimum. In ISS,

the next position in the optimization sequence is independent
of the current position (random search, not random walk).

Niirst IS only 22,727.

3.5. Application of iterative stochastic search method to

Progression toward the global optimum is therefore not sub- wjgher dimensional problems

ject to spatial restrictions governing a path/chain, but allowed

to explore the entire domain freely and uniformly. Within a
Markov chain of lengthN, a fraction could be wasted in SA
due to futile cycles, but alN points will contribute to the
uniform sampling of the simulation domain in ISS, resulting
in identification ofm best points for the next iteration.

For a successful implementation of SA, many parameters
such as length of Markov chain, initial step size and tem-
perature, coefficients for temperature and step size decre-

Fromthe algorithm description, itis evidentthat ISS can be
easily generalized to more than two dimensions. The method
can be tested using a periodic, hyperdimensional function
with many optima,

ment (cooling schedule), and threshold criteria (stopping and also the non-periodic version,

rule) [30,31] need to be fine-tuned to best suit the behavior

of the quality criteria function and volume of the simulation
domain. In contrast, ISS implementation only invol:égss;,

N, andm. Furthermore, agis known to be small so as to fa-
cilitate fast sorting, fine tuning is only needed kst andN.

d
R = [ ] grone (19)
i=1
|
Fa(x) =[] gz (20)

i=1

wherex is the vector of independent variables ahi$ the

From a practical standpoint, ISSis clearly an easier algorithm. number of dimensions/independent variableg. 6 shows

Characterization of ISS reveals interesting analogies (i.e.,

F, for the two-dimensional casel € 2), whereas-, would

storage points, uniform sampling, stochastic processes) tobe a simple mound-shaped surface. BetrandF, assume

algorithms commonly used in HPLC optimization (SS, GS,

a global optimum value of 1 at=[0].

and SA). In each case, however, ISS features clear advantages The choice ofNsst andN depends on the number of di-

(e.g., ability to identify global optimum, higher precision,

more efficient use of CPU cycles, easier implementation),

mensions, and also the hyperdimensional volume of the do-
main evaluated. As each variableis evaluated inz, 7,

thus making it an attractive choice as an optimum search the volumeV is calculated as @°. A maximum volumeVo

method.

is chosen az=20. Nfst is set to (//Vo)lod‘l, but restricted

As a final note, it is possible to use stopping criteria (step in [10,000,1,000,000N is set to min(10,00Q\st/50).

4 in ISS algorithm) other than the mathematical definition

The search algorithm was coded in Visual Basic 6 and

of e-8 convergence. For example, the search can be stoppedxecuted on a 2.0 GHz Pentium 4 PC. Correct identification
when all of the coordinates/independent variables are within of the global optimum is achieved in all trial runs<10->,
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Fig. 6. Periodic functior1 in 2 dimensionsX andy), drawn in -z, 7] =
[—20, 20]. Thezdirection here is scaled up 10 times to clearly show the
optima. The function reaches a global optimum at (0, 0).The fundton
(not shown) would look like a mound centered at the origin, tangent to the
optima ofF;.
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bile phase composition). To our knowledge, there has been
no simultaneous HPLC optimization reported in the literature
that operates on more than four dimensions. The availability
of more robust (faster and more accurate) search algorithms
such as ISS may provide an incentive for higher dimensional
optimization in HPLC separation.

3.6. Identification of optimal and pathological
conditions using proposed optimization method

Execution of the overall optimization strategy (experi-
mental design, modeling, scoring, and optimum identifica-
tion) is demonstrated on a sample containing representa-
tive substrates and products found in microbial fermentation
processes. The sample contained 0.1 g/L each of potassium
phosphate (KHPQy), glucose, xylose, malic acid, succinic
acid, lactic acid, formic acid, and ethanol (eight compounds).
Based on the retention model and peak width estimates from
a preliminary run, the optimal conditions were identified us-
ing OPTIMIZE: T=26.1°C andC=6.57 mM, with analysis
time ~30 min based on ethanol as the last eluting compound.

z=10). Reasonable simulation time (under 1 min) is achieved The optimized run is shown iRig. 7a. The retention times

up tod =7 for F1. Optimization off, is much faster because
of the simpler form of the function. Ad=7,F, is optimized
within 0.2 s.

Although hypothetical functions1 andF; are different
in form compared to real quality criteria functions (e 9.,
they are representative of “difficult” and “easy” hyperdimen-
sional functionsF is certainly as difficult as any real quality

are in excellent agreement with the predicted values accord-
ing to the retention model (all within 1%). The act@ilalue
of 7.224 compares well with the predicted value of 7.610
(within 59%).

The ISS algorithm used solved the optimization prob-
lem in 0.25s through 50,444 evaluations Bf at ¢=
10~7 (2.0 GHz Pentium 4 PC). For comparison, consider

criteria function, so robust performance of ISS up to seven a GS with grid size approximating instrument precisions.

dimensions here looks promising, suggesting potential ap-

plication in HPLC optimization in larger dimensional spaces
(e.g., temperature, flow rate, pH, ionic strength, tertiary mo-

The smallest increment in the temperature controller is
0.1°C, so the number of grids in thedirection is (60°C
—25°C)/(0.1°C) =350. Assuming 18 M bS50, for prepa-

E 1.004 (a) Optimized condition
@
o 2
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Q 36
8 7
= 0.00] :
5 8
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Fig. 7. HPLC separation of a sample containing 0.1 g/L each of (1) potassium phosphaBdK{H?2) glucose, (3) xylose, (4) malic acid, (5) succinic acid, (6)
lactic acid, (7) formic acid, and (8) ethanol, in the order of elution times. (a). Optimized/best condifier2ét1°C andC = 6.57 mM. (b) Pathological/worst
condition atT=50.6°C andC=17.84 mM. Here phosphate coelutes with glucose and xylose coelutes with malic acid.
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Fig. 8. Contour plot of quality criteria functio8 for a sample containing
phosphate, glucose, xylose, malic acid, succinic acid, lactic acid, formic acid,
and ethanolr{=8). Two coelution loci shown correspond to phosphate and
glucose, and xylose and malic acid. These two loci interseEt=a50.6°C
andC=17.84 mM.

ration of 1L of mobile phase using a micropipetter with
1uL increments, the number of grids in thedirection
=(30-0.5mM)(1000 mL/18,000 mM)(10Qa/mL) =1639.
With total number of grid points=(350+1)(1639+1)=
575,640 function evaluations, the problem was optimized in
2.63s. The speedup factor of ISS over GS is >10 times in
this case.

The retention model allows us not only to predict the
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4. Conclusions

The alternative global resolution functi@for HPLC op-
timization proposed in this work shows superior performance
when compared to general classes of quality criteria functions
(Rs, Rp, andRyn), including correct assessment of favorable
separation conditions, preservation of individual peak pair
contributions, elimination of arbitrary cut-off values, and a
unigue capability to interpret absolute significance of func-
tion values through a simple inequality. The novel global
optimization algorithm (iterative stochastic search, ISS) also
developed in this work shows clear advantages over exist-
ing algorithms for HPLC optimization (grid search, simplex
search, simulated annealing) in its ability to correctly identify
the global optimum (instead of local optimum), with higher
precision, with more efficient use of computation cycles, and
with easier implementation. Based on a case study using a
hyperdimensional function with many optima, robust perfor-
mance of ISS also suggests its possible application in simul-
taneous, higher-dimensional HPLC optimization. Successful
application ofSand ISS to HPLC optimization was demon-
strated in the separation of 8 representative substrates and
products found in microbial fermentation. Excellent agree-
ment was found between actual and predicted values for the
optimized (best) and pathological (worst) conditions. The
overall optimization strategy successfully implemented in
this work can be generalized to any HPLC optimization prob-
lem.
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